Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Luping | Wang, Meiling | He, Xiaohai; * | Qing, Linbo | Zhang, Jin
Affiliations: College of Electronics and Information Engineering, Sichuan University, China
Correspondence: [*] Corresponding author. Xiaohai He, College of Electronics and Information Engineering, Sichuan University, Chengdu, 610065, China. E-mail: [email protected].
Abstract: Joint extraction of entities and relations from unstructured text is an essential step in constructing a knowledge base. However, relational facts in these texts are often complicated, where most of them contain overlapping triplets, making the joint extraction task still challenging. This paper proposes a novel Sequence-to-Sequence (Seq2Seq) framework to handle the overlapping issue, which models the triplet extraction as a sequence generation task. Specifically, a unique cascade structure is proposed to connect transformer and pointer network to extract entities and relations jointly. By this means, sequences can be generated in triplet-level and it speeds up the decoding process. Besides, a syntax-guided encoder is applied to integrate the sentence’s syntax structure into the transformer encoder explicitly, which helps the encoder pay more accurate attention to the syntax-related words. Extensive experiments were conducted on three public datasets, named NYT24, NYT29, and WebNLG, and the results show the validity of this model by comparing with various baselines. In addition, a pre-trained BERT model is also employed as the encoder. Then it comes up to excellent performance that the F1 scores on the three datasets surpass the strongest baseline by 5.7%, 5.6%, and 4.4%.
Keywords: Information extraction, sequence to sequence, transformer network, pointer network, syntax-guided attention network
DOI: 10.3233/JIFS-210281
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 12167-12183, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]