Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Trisal, Sushil Kumar; * | Kaul, Ajay
Affiliations: Department of Computer Science and Engineering, Shri Mata Vaishnov Devi University, Katra, Jammu and Kashmir, India
Correspondence: [*] Corresponding author. Sushil Kumar Trisal, Shri Mata Vaishno Devi University, Kakryal, 182320, Jammu and Kashmir, India. E-mail: [email protected].
Abstract: Stress has become a household word which generates emotional distress, physical diseases, dysfunction and social ills. An abundant evidence is present in the literature that makes the stress research and theory high profile and important for physiological, psychological and social health. It can be legitimately said that due to the advent of social media, it has opened up inputs for the exploration of stress. The social media has become very prominent as it has touched daily lives. It has changed the way we are looking at the things, it has changed the life style, it has changed the way we are consuming the information. It has created a bridge of trust among the people of different professional’s. Social media has become undeniably a global phenomenon in the last decade or so, since the founding of social media sites like Twitter and Facebook. It is of significant importance to detect and manage the stress from theses interactions at early stage otherwise it wreaks havoc on your emotional equilibrium and your physical health. It narrows your ability to think clearly, function effectively and enjoy life. In this work our endeavor is that to present a novel method to detect the different stress levels from the social media interactions using fuzzy and factor graph methods. A correlation analysis between stressed, non-stressed and emotion tweets is carried out for social engagement correlation and behavior correlation analysis of the social media users. The proposed method performs better when results are compared with the other state of art machine learning methods.
Keywords: Stress, social engagement, correlation, psychological stress, machine learning, social media
DOI: 10.3233/JIFS-202035
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 413-430, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]