Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lin, Qiongbina | Xu, Zhifana; b | Lin, Chih-Minb; *
Affiliations: [a] College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China | [b] Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
Correspondence: [*] Corresponding author. Chih-Min Lin, Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taoyuan, Taiwan. E-mail: [email protected].
Abstract: This study proposes the novel method of lithium-ion battery state of health (SoH) estimation and remaining useful life (RUL) prediction to ensure the safety and reliability of the energy storage system. A fuzzy brain emotional learning neural network (FBELNN) is employed to estimate SoH and a recurrent cerebellar model neural network (RCMNN) is used for the RUL prediction. The inputs of FBELNN are extracted features from the monitoring curve of the constant voltage and current, because the lithium-ion battery is seldom completely discharged and the discharging situation in actual operating process is complex. The FBELNN learns the battery aging features that are extracted and selected by discrete wavelet transform and principal component analysis, respectively. The SoH estimation results from the FBELNN are accurate due to the special structure and parameters adaptive laws. The RCMNN and online training again can improve the performance of RUL prediction, because recurrent units can capture the dynamic features. Experimental data are performed by using NASA Prognostics Center of Excellence battery datasets to verify the effectiveness of the proposed method. The results show that the root mean square error of SoH estimation is smaller by the FBELNN and the prediction accuracy of RUL is higher by RCMNN under the different starting points.
Keywords: Fuzzy brain emotional learning neural network, recurrent cerebellar model neural network, lithium-ion battery, remaining useful life, state of health
DOI: 10.3233/JIFS-201952
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 10919-10933, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]