Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gu, Tianlonga; b | Liang, Haohonga | Bin, Chenzhonga; * | Chang, Lianga
Affiliations: [a] School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China | [b] College of Information Science and Technology / College of Cyber Security, Jinan University, Guangzhou, China
Correspondence: [*] Corresponding author. Chenzhong Bin, Guilin University of Electronic Technology Guilin, China. E-mail: [email protected].
Abstract: How to accurately model user preferences based on historical user behaviour and auxiliary information is of great importance in personalized recommendation tasks. Among all types of auxiliary information, knowledge graphs (KGs) are an emerging type of auxiliary information with nodes and edges that contain rich structural information and semantic information. Many studies prove that incorporating KG into personalized recommendation tasks can effectively improve the performance, rationality and interpretability of recommendations. However, existing methods either explore the independent meta-paths for user-item pairs in KGs or use a graph convolution network on all KGs to obtain embeddings for users and items separately. Although both types of methods have respective effects, the former cannot fully capture the structural information of user-item pairs in KGs, while the latter ignores the mutual effect between the target user and item during the embedding learning process. To alleviate the shortcomings of these methods, we design a graph convolution-based recommendation model called Combining User-end and Item-end Knowledge Graph Learning (CUIKG), which aims to capture the relevance between users’ personalized preferences and items by jointly mining the associated attribute information in their respective KG. Specifically, we describe user embedding from a user KG and then introduce user embedding, which contains the user profile into the item KG, to describe item embedding with the method of Graph Convolution Network. Finally, we predict user preference probability for a given item via multilayer perception. CUIKG describes the connection between user-end KG and item-end KG, and mines the structural and semantic information present in KG. Experimental results with two real-world datasets demonstrate the superiority of the proposed method over existing methods.
Keywords: Personalized recommendation, property knowledge graph, graph convolution network
DOI: 10.3233/JIFS-201635
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 5, pp. 9213-9225, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]