Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Muhammed Anees, V.; * | Santhosh Kumar, G.
Affiliations: Department of Computer Science, Artificial Intelligence & Computer Vision Lab, Cochin University of Science and Technology, Cochin, Kerala, India
Correspondence: [*] Corresponding author. Muhammed Anees V, Department of Computer Science, Artificial Intelligence & Computer Vision Lab, Cochin University of Science and Technology, Cochin, Kerala, 682022, India. E-mail: [email protected].
Abstract: Crowd behaviour analysis and management have become a significant research problem for the last few years because of the substantial growth in the world population and their security requirements. There are numerous unsolved problems like crowd flow modelling and crowd behaviour detection, which are still open in this area, seeking great attention from the research community. Crowd flow modelling is one of such problems, and it is also an integral part of an intelligent surveillance system. Modelling of crowd flow has now become a vital concern in the development of intelligent surveillance systems. Real-time analysis of crowd behavior needs accurate models that represent crowded scenarios. An intelligent surveillance system supporting a good crowd flow model will help identify the risks in a wide range of emergencies and facilitate human safety. Mathematical models of crowd flow developed from real-time video sequences enable further analysis and decision making. A novel method identifying eight possible crowd flow behaviours commonly seen in the crowd video sequences is explained in this paper. The proposed method uses crowd flow localisation using the Gunnar-Farneback optical flow method. The Jacobian and Hessian matrix analysis along with corresponding eigenvalues helps to find stability points identifying the flow patterns. This work is carried out on 80 videos taken from UCF crowd and CUHK video datasets. Comparison with existing works from the literature proves our method yields better results.
Keywords: Crowd flow, surveillance, optical flow, crowd model, stability analysis
DOI: 10.3233/JIFS-200667
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 2829-2843, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]