Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ontiveros-Robles, Emanuel | Castillo, Oscar; * | Melin, Patricia
Affiliations: Tijuana Institute of Technology, Calzada Tecnologico s/n, Fracc. Tomas Aquino Tijuana, México
Correspondence: [*] Corresponding author. Oscar Castillo, Tijuana Institute of Technology, Calzada Tecnologico s/n, Fracc. Tomas Aquino Tijuana, México. E-mail: [email protected].
Abstract: In recent years, successful applications of singleton fuzzy inference systems have been made in a plethora of different kinds of problems, for example in the areas of control, digital image processing, time series prediction, fault detection and classification. However, there exists another relatively less explored approach, which is the use of non-singleton fuzzy inference systems. This approach offers an interesting way for handling uncertainty in complex problems by considering inputs with uncertainty, while the conventional Fuzzy Systems have their inputs with crisp values (singleton systems). Non-singleton systems have as inputs Type-1 membership functions, and this difference increases the complexity of the fuzzification, but provides the systems with additional non-linearities and robustness. The main limitations of using a non-singleton fuzzy inference system is that it requires an additional computational overhead and are usually more difficult to apply in some problems. Based on these limitations, we propose in this work an approach for efficiently processing non-singleton fuzzy systems. To verify the advantages of the proposed approach we consider the case of general type-2 fuzzy systems with non-singleton inputs and their application in the classification area. The main contribution of the paper is the implementation of non-singleton General Type-2 Fuzzy Inference Systems for the classification task, aiming at analyzing its potential advantage in classification problems. In the present paper we propose that the use of non-singleton inputs in Type-2 Fuzzy Classifiers can improve the classification rate and based on the realized experiments we can observe that General Type-2 Fuzzy Classifiers, but with non-singleton fuzzification, obtain better results in comparison with respect to their singleton counterparts.
Keywords: Type-2 fuzzy classifiers, Type-2 fuzzy logic, non-singleton
DOI: 10.3233/JIFS-200639
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7203-7215, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]