Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bekmezci, Ilkera | Ermis, Muratb; * | Cimen, Egemen Berkic
Affiliations: [a] Department of Computer Engineering, MEF University, Istanbul, Turkey | [b] Department of Industrial Engineering, Istanbul Kultur University, Istanbul, Turkey | [c] Department of Industrial Engineering, National Defense University, Istanbul, Turkey
Correspondence: [*] Corresponding author. Murat Ermis, Department of Industrial Engineering, Istanbul Kultur University, Istanbul, Turkey. E-mail: [email protected].
Abstract: Social network analysis offers an understanding of our modern world, and it affords the ability to represent, analyze and even simulate complex structures. While an unweighted model can be used for online communities, trust or friendship networks should be analyzed with weighted models. To analyze social networks, it is essential to produce realistic social models. However, there are serious differences between social network models and real-life data in terms of their fundamental statistical parameters. In this paper, a genetic algorithm (GA)-based social network improvement method is proposed to produce social networks more similar to real-life data sets. First, it creates a social model based on existing studies in the literature, and then it improves the model with the proposed GA-based approach based on the similarity of the average degree, the k-nearest neighbor, the clustering coefficient, degree distribution and link overlap. This study can be used to model the structural and statistical properties of large-scale societies more realistically. The performance results show that our approach can reduce the dissimilarity between the created social networks and the real-life data sets in terms of their primary statistical properties. It has been shown that the proposed GA-based approach can be used effectively not only in unweighted networks but also in weighted networks.
Keywords: Genetic algorithm, social network modeling, trust network, online communities
DOI: 10.3233/JIFS-200563
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 1597-1608, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]