Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Shuganga | Zhu, Lironga | Zhu, Boyia | Wang, Rua | Zheng, Linglinga; * | Yu, Zhaoxub | Lu, Hanyua
Affiliations: [a] School of Management, Shanghai University, Shanghai, PR China | [b] Department of Automation, East China University of Science and Technology, Shanghai, PR China
Correspondence: [*] Corresponding author. Lingling Zheng, School of Management, Shanghai University, Shanghai, 200444, PR China. E-mail: [email protected].
Abstract: 3D printing is the important part of the emerging industry, and the accurate prediction of technology hot spots (THS) in the 3D printing industry is crucial for the strategic technology planning. The patents of the THS are always in the minority and have outlier characteristics, so the existing single and rigid models cannot accurately and robustly predict the THS. In order to make up for the shortcomings of the existing research, this study proposes a model for robust composite attraction indicator (MRCAI), which avoids the impact of outlier patents on prediction accuracy depending on not only extracting the patent attraction indicators (AIs) but also constructing the robust composite attraction indicator (CAI) according to the rough consensus of predicted results of CAIs with high generalization. Specifically, firstly, this study selects the patent AIs from the four dimensions of the attraction: technology group attraction, state attraction, enterprise attraction and inventor attraction. Secondly, in order to completely describe the attraction features of patent, AIs are directly and indirectly integrated into CAIs. Thirdly, we reduce the influence of outlier patents on prediction accuracy from two aspects: on the one hand, we initially select the CAIs with good generalization performance based on the prediction error fluctuation range. On the other hand, we build the robust CAIs by calculating the consensus of CAIs with high generalization performance based on the rough set. Fourthly, the 3D printing industry technology attention matrix is constructed to map the effective technology strategic planning based on predicted patent backward citation count by MRCAI in the short, medium and long term. Finally, the experimental results on 3D printing patent data show that MRCAI can effectively improve the efficiency in dealing with samples with outlier patents and has strong flexibility and robustness in predicting the THS in 3D printing industry.
Keywords: Technology hot spots, outlier samples, robust CAI, 3D printing, technology attention matrix
DOI: 10.3233/JIFS-200404
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7135-7149, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]