Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Shuqi | Shao, Mingwen; * | Liu, Xinping
Affiliations: School of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
Correspondence: [*] Corresponding author. Mingwen Shao, E-mail: [email protected].
Abstract: In recent years, deep neural networks have made significant progress in image classification, object detection and face recognition. However, they still have the problem of misclassification when facing adversarial examples. In order to address security issue and improve the robustness of the neural network, we propose a novel defense network based on generative adversarial network (GAN). The distribution of clean - and adversarial examples are matched to solve the mentioned problem. This guides the network to remove invisible noise accurately, and restore the adversarial example to a clean example to achieve the effect of defense. In addition, in order to maintain the classification accuracy of clean examples and improve the fidelity of neural network, we input clean examples into proposed network for denoising. Our method can effectively remove the noise of the adversarial examples, so that the denoised adversarial examples can be correctly classified. In this paper, extensive experiments are conducted on five benchmark datasets, namely MNIST, Fashion-MNIST, CIFAR10, CIFAR100 and ImageNet. Moreover, six mainstream attack methods are adopted to test the robustness of our defense method including FGSM, PGD, MIM, JSMA, CW and Deep-Fool. Results show that our method has strong defensive capabilities against the tested attack methods, which confirms the effectiveness of the proposed method.
Keywords: Deep neural network, generative adversarial network, adversarial example, defense
DOI: 10.3233/JIFS-200280
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7085-7095, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]