Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhu, Danchen; * | Zhang, Yongxiang | Zhao, Lei
Affiliations: Department of Power Engineering, Naval University of Engineering, Wuhan, China
Correspondence: [*] Corresponding author. Danchen Zhu, Department of Power Engineering, Naval University of Engineering, Wuhan, China. E-mail: [email protected].
Abstract: Features of raw bearing vibration signals aren’t invariant with the change of rotating speed. As a result, determining the proper features is essential for the feature learning based intelligent fault diagnosis method for rolling element bearing with varying rotating speed. To address this issue, a convolutional neural network (CNN) based fault diagnosis approach is proposed. In the proposed method, envelope order spectra extracted from the raw vibration signals are used to provide abundant information about the fault characteristic orders, which are features invariant to the rotating speed. Subsequently, to extract these representative features automatically, a CNN model is constructed and employed, which avoid the manual feature selection. Finally, the type of bearing defects can be recognized successfully. In the experimental verification, the CNN is trained using a data set corresponds to one revolution per minute (RPM), while the data sets correspond to other RPMs are employed to verify the classification accuracy of the trained CNN, which can reflect the effectiveness of proposed method for bearing fault detection under different rotating speed. Experimental results show the satisfactory performance of fault-pattern recognition for the proposed method. When compared with some other approaches using intelligence-based fault diagnosis method, the results show the superiority of the proposed method.
Keywords: Convolutional neural network, envelope order spectrum, rolling element bearing, fault diagnosis
DOI: 10.3233/JIFS-190101
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 2, pp. 3027-3040, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]