Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Kumar, Neeraj; * | Tripathi, M.M.
Affiliations: Department of Electrical Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, India
Correspondence: [*] Corresponding author. Neeraj Kumar, Department of Electrical Engineering, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India. E-mail: [email protected].
Abstract: Penetration of renewable energy resources into grid is necessary to meet the elevated demand of electricity. In view of this penetration of solar and wind power increasing immensely across the globe. Solar energy is widely expanding in terms of generation and capacity addition due its better predictability over wind energy. Electricity pricing is one of the important aspects for power system planning and it felicitates information for the electricity bidder for accurate electricity generation and resource allocation. The important task is to forecast the electricity price accurately in grid interactive environment. This task is tedious in renewable integrated market due to intermittency issue. In this paper, investigation has been done on the effect of solar energy generation on electricity price forecasting. Different state of the art Machine learning (ML) models have been applied and compared with LSTM model for electricity price forecasting and the evaluation of the impact of solar energy generation on electricity price has been done. During the investigation it was found from the results that the LSTM model outperform all other models and impact of solar energy generation on electricity price is evaluated using forecasting metrics. The forecasted electricity price considering the factor of solar energy generation was lower as compared with the forecast without solar energy generation. The reliability test of the MAPE values has been performed by calculating confidence interval for proposed model.
Keywords: Price forecasting, renewable energy, LSTM, LASSO, decision tree, random forest, XGBoost
DOI: 10.3233/JIFS-189781
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 1185-1197, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]