Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Srikanth, Pullabhatlaa; * | Koley, Chiranjibb
Affiliations: [a] EED, NIT Durgapur, West Bengal & CCE (R&D) South, DRDO Secunderabad, India | [b] National Institute of Technology, Durgapur, West Bengal, India
Correspondence: [*] Corresponding author. Pullabhatla Srikanth, EED, NIT Durgapur, West Bengal –713 209 & CCE (R&D) South, DRDO Secunderabad –500 009, India. E-mail: [email protected].
Abstract: A convolution neural network (CNN) based deep learning method has been proposed for automatic classification and localization of nonlinear loads present in an interconnected power system. The identification of nonlinear loads has been previously dealt with the use of Nonlinear Auto Regression neural network with eXogenous inputs (NARX), Backpropagation Neural Network (BPNN), Probabilistic Neural Network (PNN), Artificial Neural Networks (ANN) and Fuzzy Logic (FL). However, these techniques had not explored the area of classification of industrial and domestic nonlinear loads in an interconnected power system. Also, a Deep learning-based solution for identification of the type of nonlinear load has not been reported in the literature to date. Hence, to address these shortcomings, an IEEE-9 Bus system with industrial nonlinear loads has been used to obtain various current waveforms with distortions. The recorded current waveforms are transformed into a time-frequency (TF) domain plane, and the obtained images are then fed to the deep learning algorithm. The colored images of the TF plots of each type of nonlinear load in Red-Green-Blue (RGB) index provide the best visual features for extraction. The TF domain signatures of individual events are scaled to a standard size before feeding to the algorithm. Through these TF signatures, unique features were extracted with the deep learning algorithm, and then passed on to different stages of convolution and max-pooling with fully connected layers. The softmax classifier at the end classifies the input data into the type of nonlinear present in the power system. The algorithm, when run at different buses, also identifies the location of the nonlinear load. The proposed methodology avoids the usage of any additional fusion layer for obtaining unique features, reduces the training time and maintains the highest accuracy of 100%.
Keywords: Nonlinear loads, localization, identification, deep learning, time-frequency representation
DOI: 10.3233/JIFS-189780
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 1171-1184, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]