Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Pervez, Imrana | Sarwar, Adila | Alam, Afroza | Tariq, Mohda; * | Chakrabortty, Ripon K.b | Ryan, Michael J.b
Affiliations: [a] Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh, India | [b] Capability Systems Centre, School of Engineering & IT, UNSW Canberra at ADFA, Australia
Correspondence: [*] Corresponding author. Dr. Mohd Tariq, Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh, India. E-mail: [email protected].
Abstract: Due to its clean and abundant availability, solar energy is popular as a source to generate electricity. Solar photovoltaic (PV) technology converts sunlight incident on the solar PV panel or array directly into non-linear DC electricity. However, the non-linear nature of the solar panels’ power needs to be tracked for its efficient utilization. The problem of non-linearity becomes more prominent when the solar PV array is shaded, even leading to high power losses and concentrated heating in some areas (hotspot condition) of the PV array. Bypass diodes used to eliminate the shading effect cause multiple peaks of power on the power versus voltage (P-V) curve and make the tracking problem quite complex. Conventional algorithms to track the optimal power point cannot search the complete P-V curve and often become trapped in local optima. More recently, metaheuristic algorithms have been employed for maximum power point tracking. Being stochastic, these algorithms explore the complete search area, thereby eliminating any chance of becoming trapped stuck in local optima. This paper proposes a hybridized version of two metaheuristic algorithms, Radial Movement Optimization and teaching-learning based optimization (RMOTLBO). The algorithm has been discussed in detail and applied to multiple shading patterns in a solar PV generation system. It successfully tracks the maximum power point (MPP) in a lesser amount of time and lesser fluctuations.
Keywords: Maximum power point tracking, metaheuristic algorithms, partial shading, photovoltaic
DOI: 10.3233/JIFS-189750
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 807-816, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]