Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Jain, Achina | Jain, Vanitab; *
Affiliations: [a] University School of Information, Communication and Technology, GGSIPU, Sector 16C, Dwarka, Delhi, India | [b] Bharati Vidyapeeth’s College of Engineering, Paschim Vihar, New Delhi, India
Correspondence: [*] Corresponding author. Vanita Jain, Bharati Vidyapeeth’s College of Engineering, Paschim Vihar, New Delhi, India. E-mail: [email protected].
Abstract: This paper presents a Hybrid Feature Selection Technique for Sentiment Classification. We have used a Genetic Algorithm and a combination of existing Feature Selection methods, namely: Information Gain (IG), CHI Square (CHI), and GINI Index (GINI). First, we have obtained features from three different selection approaches as mentioned above and then performed the UNION SET Operation to extract the reduced feature set. Then, Genetic Algorithm is applied to optimize the feature set further. This paper also presents an Ensemble Approach based on the error rate obtained different domain datasets. To test our proposed Hybrid Feature Selection and Ensemble Classification approach, we have considered four Support Vector Machine (SVM) classifier variants. We have used UCI ML Datasets of three domains namely: IMDB Movie Review, Amazon Product Review and Yelp Restaurant Reviews. The experimental results show that our proposed approach performed best in all three domain datasets. Further, we also presented T-Test for Statistical Significance between classifiers and comparison is also done based on Precision, Recall, F1-Score, AUC and model execution time.
Keywords: Classification, sentiment analysis, genetic algorithm, support vector machine, machine learning
DOI: 10.3233/JIFS-189738
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 659-668, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]