Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the 9th International Multi-Conference on Engineering and Technology Innovation 2019 (IMETI2019)
Guest editors: Wen-Hsiang Hsieh
Article type: Research Article
Authors: Wen, Bor-Jiunn; * | Lin, Yung-Sheng | Tu, Hsing-Min | Hsieh, Cheng-Chang
Affiliations: Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.
Correspondence: [*] Corresponding author. Bor-Jiunn Wen. E-mail: [email protected].
Abstract: This study proposes a cloud tele-measurement technique on an electromechanical system, and uses a neural network algorithm based on principal-component analysis (PCA) to quickly diagnose its performance. Three vibration, three temperature, electrical voltage, and current sensors were mounted on the electromechanical system, and the external braking device was used to provide different load-states to simulate the operating states of the motor under different conditions. Moreover, a single-chip multiprocessor was used through the sensor to instantly measure the various load-state simulations of the motor. The operating states of the electromechanical system were classified as normal, abnormal, and required-to-be-turned-off states using a principal-component Bayesian neural network algorithm (PBNNA), to enable their quick diagnosis. Furthermore, PBNNA successfully reduces the dimensionality of the multivariate dataset for rapid analysis of the electromechanical system’s performance. The accuracy rates of health-diagnosis based on the Bayesian neural network algorithm and PBNNA models were obtained as 97.7% and 98%, respectively. Finally, the single-chip multiprocessor based on PBNNA is used to automatically upload the measurement and analysis results of the electromechanical system to the cloud website server. The establishment of this model system can optimize prediction judgment and decision-making based on the damage situation to achieve the goals of intelligence and optimization of factory reconstruction.
Keywords: Tele-measurement, electromechanical system, principal-component bayesian neural network algorithm, health-diagnosis, cloud website server
DOI: 10.3233/JIFS-189587
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 7671-7680, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]