Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Affiliations: Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
Correspondence: [*] Corresponding author. Suhua Bu, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China. E-mail: [email protected].
Abstract: In the era of the Internet of Things, smart logistics has become an important means to improve people’s life rhythm and quality of life. At present, some problems in logistics engineering have caused logistics efficiency to fail to meet people’s expected goals. Based on this, this paper proposes a logistics engineering optimization system based on machine learning and artificial intelligence technology. Moreover, based on the classifier chain and the combined classifier chain, this paper proposes an improved multi-label chain learning method for high-dimensional data. In addition, this study combines the actual needs of logistics transportation and the constraints of the logistics transportation process to use multi-objective optimization to optimize logistics engineering and output the optimal solution through an artificial intelligence model. In order to verify the effectiveness of the model, the performance of the method proposed in this paper is verified by designing a control experiment. The research results show that the logistics engineering optimization based on machine learning and artificial intelligence technology proposed in this paper has a certain practical effect.
Keywords: Machine learning, artificial intelligence, logistics, optimization
DOI: 10.3233/JIFS-189244
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2505-2516, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]