Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Lin, Lin; * | Liu, Jie | Zhang, Xuebing | Liang, Xiufang
Affiliations: Cangzhou Normal University, Cangzhou, Hebei, China
Correspondence: [*] Corresponding author. Lin Lin, Cangzhou Normal University, Cangzhou, Hebei, 061000, China E-mail: [email protected].
Abstract: Due to the complexity of English machine translation technology and its broad application prospects, many experts and scholars have invested more energy to analyze it. In view of the complex and changeable English forms, the large difference between Chinese and English word order, and insufficient Chinese-English parallel corpus resources, this paper uses deep learning to complete the conversion between Chinese and English. The research focus of this paper is how to use language pairs with rich parallel corpus resources to improve the performance of Chinese-English neural machine translation, that is, to use multi-task learning to train neural machine translation models. Moreover, this research proposes a low-resource neural machine translation method based on weight sharing, which uses the weight-sharing method to improve the performance of Chinese-English low-resource neural machine translation. In addition, this study designs a control experiment to analyze the effectiveness of this study model. The research results show that the model proposed in this paper has a certain effect.
Keywords: Machine learning, improved algorithm, spoken English, automatic translation
DOI: 10.3233/JIFS-189234
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2385-2395, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]