Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Chen, Lihuia | Zhang, Rongzhua | Ahmad, Awaisb | Jeon, Gwanggilc; d; * | Yang, Xiaomina; *
Affiliations: [a] College of Electronics and Information Engineering, Sichuan University, China | [b] Department of Information (DI), Università degli Studi di Milano Statale, Via Celoria 18, Italy | [c] School of Electronic Engineering, Xidian University, Xi’an, China | [d] Department of Embedded Systems Engineering, Incheon National University, Korea
Correspondence: [*] Corresponding author. Gwanggil Jeon and Xiaomin Yang, E-mail: [email protected]. (Gwanggil Jeon), E-mail: [email protected]. (Xiaomin Yang)
Abstract: Data cognition plays an important role in cognitive computing. Cognition of low-resolution (LR) image is a long-stand problem because LR images have insufficient information about objects. For better cognition of LR images, a multi-resolution residual network (MRRN) is proposed to improve image resolution in this paper for cognitive computing systems. In MRRN, a multi-resolution feature learning (MRFL) strategy is introduced to achieve satisfying performance with low computational costs. Inspired by image pyramids, a feature pyramid is designed to implement multi-resolution feature learning in the building unit of the proposed MRRN. Specifically, multi-resolution residual units (MRRUs) are introduced as the building units of the proposed network, which consist of a feature pyramid decomposition stage and a feature reconstruction stage. To obtain informative features, transferred skip links (TSLs) are utilized to transfer fine-grain residual features in the pyramid decomposition stage to the reconstruction stage. The effectiveness of MRFL and TSL is demonstrated by ablation experiments. Also, the tests on standard benchmarks indicate the superiority of the proposed MRRN over other state-of-the-art methods.
Keywords: Artificial intelligence, deep learning, convolutional neural networks, computer vision, image super-resolution
DOI: 10.3233/JIFS-189127
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8043-8055, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]