Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Decision Making Using Intelligent and Fuzzy Techniques
Guest editors: Cengiz Kahraman
Article type: Research Article
Authors: Yontar, Meltema; 1 | Namli, Özge Hüsniyea; b; 1 | Yanik, Sedaa; 1; *
Affiliations: [a] Department of Industrial Engineering, Faculty of Management, Istanbul Technical University, Macka, Istanbul, Turkey | [b] Department of Industrial Engineering, Faculty of Engineering, Turkish-German University, Beykoz, Istanbul, Turkey
Correspondence: [*] Corresponding author. Seda Yanik, Department of Industrial Engineering, Faculty of Management, Istanbul Technical University, Macka, 34367 Istanbul, Turkey Tel.: +90 212 2931300 2089; E-mail: [email protected].
Note: [1] All authors have contributed equally.
Abstract: Customer behavior prediction is gaining more importance in the banking sector like in any other sector recently. This study aims to propose a model to predict whether credit card users will pay their debts or not. Using the proposed model, potential unpaid risks can be predicted and necessary actions can be taken in time. For the prediction of customers’ payment status of next months, we use Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification and Regression Tree (CART) and C4.5, which are widely used artificial intelligence and decision tree algorithms. Our dataset includes 10713 customer’s records obtained from a well-known bank in Taiwan. These records consist of customer information such as the amount of credit, gender, education level, marital status, age, past payment records, invoice amount and amount of credit card payments. We apply cross validation and hold-out methods to divide our dataset into two parts as training and test sets. Then we evaluate the algorithms with the proposed performance metrics. We also optimize the parameters of the algorithms to improve the performance of prediction. The results show that the model built with the CART algorithm, one of the decision tree algorithm, provides high accuracy (about 86%) to predict the customers’ payment status for next month. When the algorithm parameters are optimized, classification accuracy and performance are increased.
Keywords: Credit card, machine learning, classification, parameter optimization, ANN, SVM, CART
DOI: 10.3233/JIFS-189080
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6073-6087, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]