Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent Algorithms for Complex Information Services - Recent Advances and Future Trends
Guest editors: Andino Maseleno, Xiaohui Yuan and Valentina E. Balas
Article type: Research Article
Authors: Li, Yana | Hu, Miaob | Wang, Taiyongc; *
Affiliations: [a] Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China | [b] Lingyun Industrial Corporation Limited Research and Development Center, Zhuozhou, China | [c] Tianjin Engineering Research of CNC Technology, Tianjin University, Tianjin, China
Correspondence: [*] Corresponding author. Taiyong Wang, Tianjin Engineering Research of CNC Technology, Tianjin University, Tianjin, 300072, China. E-mail: [email protected].
Abstract: Welding is an important method for modern material processing. In actual processing, due to the influence of processing accuracy and welding thermal deformation, various defects often appear in the appearance of the weld. At present, visual inspection is mainly used for the appearance inspection of welds. The detection of weld defects mainly depends on the work experience of the staff. Based on the above background, the purpose of this article is to visually inspect the weld surface quality. This article uses visually obtained fringe images of weld contours as information sources to explore a visual-based weld appearance detection algorithm, including the measurement of weld formation dimensions and the detection of weld appearance defects. This algorithm overcomes manual measurements of the misjudgments and omissions caused by eye fatigue and experience differences. It improves the efficiency and accuracy of welding appearance inspection, and meets the needs of automation and intelligence of the entire welding process. In this paper, a subpixel stripe centerline extraction algorithm based on the combination of the Hessian matrix method and the center of gravity method is used; to further improve the accuracy of the extraction of the centerline of the weld seam, this article also performs the work of removing the wrong points and the compensation of the broken seam. Obtain a fringe centerline with better connectivity. Comparing the extraction algorithms of each centerline, the centerline obtained by this method has high accuracy, less time-consuming and high stability. It laid the foundation for the subsequent inspection of weld appearance. Through the training of the model, the accurate classification and recognition of surface defects of tube and plate welds have been achieved. The experimental results show that the improved vision-based welding surface defect recognition and classification proposed in this paper has better performance and accuracy. Up to 96.34%.
Keywords: Weld quality inspection, machine vision, weld forming size, surface reconstruction, visual inspection
DOI: 10.3233/JIFS-179993
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5075-5084, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]