Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent Algorithms for Complex Information Services - Recent Advances and Future Trends
Guest editors: Andino Maseleno, Xiaohui Yuan and Valentina E. Balas
Article type: Research Article
Authors: Jin, Zhia | Ge, Dong-Yuanb; *
Affiliations: [a] Chongqing College of Electronic Engineering, ChongQing, China | [b] School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, Liuzhou, China
Correspondence: [*] Corresponding author. Dong-Yuan Ge, School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China. E-mail: [email protected].
Abstract: Intelligent vehicle technology has become a research hot issue in recent ten years, the reason is that intelligent vehicles can not only be used as a flexible weapon platform in the military. And in life, it is also a system that provides convenience and security for people. For example, driverless cars and advanced driver assistance systems (ADAS). Information processing is the key to the degree of intelligence, and the detection and recognition of traffic safety information based on monocular vision is the core of information processing, it’s also the bottleneck problem. Because of the complexity and diversity of the environment have brought great challenges to this problem. In this paper, the existing lane detection methods in structured and semi-structured roads do not specifically consider the problem of weak line detection, two models are proposed. Fuzzy LDA enhancement model is used to enhance the contrast of lane area, another brightness contrast saliency model can be used for robust Lane extraction. Then, two models are applied to lane detection, a two-stage lane detection method is proposed and a blind area vehicle detection method is designed. Firstly, the vehicle area is roughly extracted based on road gray statistics, and then the typical vehicle features are screened finely. Finally, the extracted features and SVM classifiers are used to confirm the candidate regions. Experiments show that: The proposed method can detect the vehicle in the blind area very well and is insensitive to the shape distortion and size change of the vehicle.
Keywords: Intelligent vehicle, monocular vision, driving safety information detection, vehicle characteristics
DOI: 10.3233/JIFS-179987
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5017-5026, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]