Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Intelligent data analysis and applications & smart vehicular technology, communications and applications
Guest editors: Valentina Emilia Balas and Lakhmi C. Jain
Article type: Research Article
Authors: Luo, Tai-Lia | Wu, Mu-Ena; * | Chen, Chien-Mingb
Affiliations: [a] Department of Information and Finance Management, National Taipei University of Technology, Taipei, Taiwan | [b] Shandong University of Science and Technology, Shandong Province, P.R. China
Correspondence: [*] Corresponding author. Mu-En Wu, Department of Information and Finance Management, National Taipei University of Technology, Taipei, Taiwan. E-mail: [email protected].
Abstract: Quantitative trading is a crucial aspect of money management; however, conventional trading strategies are based on indicators and signals, despite the fact that position sizing is arguably the most important issue. In this study, we present a stock evaluation function that outputs the size of the stock in each fixed period as well as the consequences of increasing or decreasing the size of one’s position. The difficulties involved in using machine learning to adjust stock weighting can be attributed to difficulties in obtaining definite answers via supervised learning. We therefore train our evaluation function using reinforcement learning via CNN within the EIIE network architecture and have the agent adjust the size of the position with the purpose of maximizing profits. Back testing was performed using the top 50 stocks in Taiwan, based on market capitalization. In experiments, most of the stock returns outperformed conventional strategies in terms of cumulative stock value.
Keywords: Deep reinforcement learning, convolution neural networks, evaluation function, position sizing, money management
DOI: 10.3233/JIFS-179653
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5639-5649, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]