Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Collective intelligence in information systems
Guest editors: Ngoc Thanh Nguyen, Edward Szczerbicki, Bogdan Trawiński and Van Du Nguyen
Article type: Research Article
Authors: Nguyen, Van Thama; c | Nguyen, Ngoc Thanhb; d | Tran, Trong Hieua; *
Affiliations: [a] VNU - University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam | [b] Faculty of Computer Science and Management, Wroclaw University of Science and Technology, Poland | [c] Faculty of Information Technology, Namdinh University of Technology Education, Vietnam | [d] Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam
Correspondence: [*] Corresponding author. Trong Hieu Tran, VNU - University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam. E-mail: [email protected].
Abstract: In the stages of development of probabilistic expert systems, knowledge merging is a major concern. To deal with knowledge merging problems, several approaches have been put forward. However, in the proposed models, each original probabilistic knowledge base (PKB) is represented by a set of probabilistic functions fulfilling such knowledge base. The drawbacks of the solutions are that the output of model is also a set of probabilistic functions satisfying the resulting PKB and there is no algorithm for implementing the merging process of PKBs in which each of them consists of probabilistic constraints. In this paper, distance-based approach is utilized to propose a new method of merging PKBs to ensure that both the input and output of methods are represented by sets of probabilistic constraints. To this aim, the relationship between the probability rules and the probabilistic constraints, and the several transformation methods for the representation of the original PKB are presented, a set of merging operators (MOs) is proposed, and several desirable logical properties are investigated and discussed. Several algorithms for merging PKBs are presented and the computational complexities of these algorithms are also analyzed and evaluated.
Keywords: Probabilistic knowledge base, knowledge merging, merging operator, algorithm
DOI: 10.3233/JIFS-179337
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 6, pp. 7265-7278, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]