Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Collective intelligence in information systems
Guest editors: Ngoc Thanh Nguyen, Edward Szczerbicki, Bogdan Trawiński and Van Du Nguyen
Article type: Research Article
Authors: D’Acunto, Marioa | Martinelli, Massimob | Moroni, Davideb; *
Affiliations: [a] Institute of Biophysics, National Research Council of Italy, Via Moruzzi, 1 – 56124-Pisa (IT) | [b] Institute of Information Science and Technologies, National Research Council of Italy, Via Moruzzi, 1 – 56124-Pisa (IT)
Correspondence: [*] Corresponding author. Davide Moroni, Institute of Information Science and Technologies, National Research Council of Italy, Via Moruzzi, 1 – 56124-Pisa (IT). E-mail: [email protected].
Abstract: Early diagnosis of cancer often allows for a more vast choice of therapy opportunities. After a cancer diagnosis, staging provides essential information about the extent of disease in the body and the expected response to a particular treatment. The leading importance of classifying cancer patients at the early stage into high or low-risk groups has led many research teams, both from the biomedical and bioinformatics field, to study the application of Deep Learning (DL) methods. The ability of DL to detect critical features from complex datasets is a significant achievement in early diagnosis and cell cancer progression. In this paper, we focus the attention on osteosarcoma. Osteosarcoma is one of the primary malignant bone tumors which usually afflicts people in adolescence. Our contribution to classification of osteosarcoma cells is made as follows: a DL approach is applied to discriminate human Mesenchymal Stromal Cells (MSCs) from osteosarcoma cells and to classify the different cell populations under investigation. Glass slides of different cell populations were cultured including MSCs, differentiated in healthy bone cells (osteoblasts) and osteosarcoma cells, both single cell populations or mixed. Images of such samples of isolated cells (single-type of mixed) are recorded with traditional optical microscopy. DL is then applied to identify and classify single cells. Proper data augmentation techniques and cross-fold validation are used to appreciate the capabilities of a convolutional neural network to address the cell detection and classification problem. Based on the results obtained on individual cells, and to the versatility and scalability of our DL approach, the next step will be its application to discriminate and classify healthy or cancer tissues to advance digital pathology.
Keywords: Human mesenchymal stromal cells, Osteosarcoma cells, deep learning, convolutional neural networks, convolutional object detection systems, cell classification
DOI: 10.3233/JIFS-179332
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 6, pp. 7199-7206, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]