Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Ambient advancements in intelligent computational sciences
Guest editors: Shailesh Tiwari, Munesh Trivedi and Mohan L. Kohle
Article type: Research Article
Authors: Ghosh, Rajdeep; * | Kumar, Vikas | Sinha, Nidul | Biswas, Saroj Kumar
Affiliations: Computer Science and Engineering Department, NIT Silchar, Silchar, Assam, India
Correspondence: [*] Corresponding author. Rajdeep Ghosh, Computer Science and Engineering Department, NIT Silchar, Silchar 788010, Assam, India. E-mail: [email protected].
Abstract: Brain Computer Interface (BCI) enables us to record and process the information generated by the brain and process them. Due to high variability of the Electroencephalogram (EEG) data, multiple trails are recorded for a particular task. The present work aims to improve the accuracy for motor imagery task classification by selecting the most prominent trail from the multiple trails recorded during motor imagery. In this paper, we propose a novel weight optimization algorithm for common spatial filtering (CSP) using evolutionary algorithms (i.e. cuckoo search algorithm (CSA), firefly algorithm (FA) and gravitational search algorithm (GSA)) to select the most prominent trial from the multiple trails recorded for feature extraction. The features extracted from the selected trials were thus used for motor imagery task classification. The performance was evaluated on the extracted features from the selected trials using two classifiers namely linear discriminant analysis (LDA) and support vector machines (SVM). It is observed that FA with band power as a feature gives the best performance in comparison to the earlier reported methods i.e. average, error based and alternating direction method of multipliers (ADMM).
Keywords: Brain computer interface, common spatial pattern, cuckoo search algorithm, electroencephalography, firefly algorithm, gravitational search algorithm, linear discriminant analysis, support vector machine
DOI: 10.3233/JIFS-169690
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 2, pp. 1501-1510, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]