Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Advances in intelligent computing for diagnostics, prognostics, and system health management
Guest editors: Chuan Li and José Valente de Oliveira
Article type: Research Article
Authors: Medina, Rubena; * | Alvarez, Ximenab | Jadán, Dianab | Macancela, Jean-Carloc | Sánchez, René–Vinicioc | Cerrada, Marielac
Affiliations: [a] Electrical Engineering School, Universidad de Los Andes, Merida, Venezuela | [b] Industrial Engineering Group, Chemical Sciences School, Universidad de Cuenca, Cuenca, Ecuador | [c] GIDTEC, Universidad Politécnica Salesiana, Ecuador
Correspondence: [*] Corresponding author. Ruben Medina, Electrical Engineering School, Universidad de Los Andes, Merida 5101, Venezuela. E-mail: [email protected].
Abstract: Fault detection in rotating machinery is important for optimizing maintenance chores and avoiding severe damages to other parts. Signal processing based fault detection is usually performed by considering classical techniques for alternative representation of significant signals in time domain, frequency domain or time-frequency domain. An approach based on dictionary learning for sparse representations of vibration signals aiming at gearbox fault detection and classification is proposed. A gearbox signal dataset with 900 records considering the normal case and nine fault classes is analyzed. A dictionary is learned by using a training set of signals from the normal case. This dictionary is used for obtaining the sparse representation of signals in the test set and the norm metric is used to measure the residual from the sparse representation. The extracted features are useful for machine learning based fault detection. The analysis is performed considering different load conditions. ANOVA statistical analysis shows that there are significant differences between features in the normal case and each of the faulty classes, and best ranked features form well separated clusters. An experiment of fault classification is developed using a support vector machine for multi-class classification of faults. The accuracy obtained is 95.1% in the cross-validation testing.
Keywords: Dictionary learning, sparse representation, vibration signal, gearbox fault, feature extraction
DOI: 10.3233/JIFS-169537
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 6, pp. 3605-3618, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]