Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Advances in intelligent computing for diagnostics, prognostics, and system health management
Guest editors: Chuan Li and José Valente de Oliveira
Article type: Research Article
Authors: Cerrada, Mariela; * | Sánchez, René-Vinicio | Cabrera, Diego
Affiliations: GIDTEC, Universidad Politécnica Salesiana, Cuenca, Ecuador
Correspondence: [*] Corresponding author. Mariela Cerrada, GIDTEC, Universidad Politécnica Salesiana, Cuenca, Ecuador. E-mail: [email protected].
Abstract: Fault diagnosis plays a crucial role to maintain healthy conditions in rotating machinery. In real industrial applications, a Machine Learning based Classifier (ML-C) analyses data from a current machinery condition to detect abnormal behaviours. Usually, this is achieved through a previous training of the ML-C model, under supervised learning; however, for new machinery conditions, the classifier is not able to correctly identify these new condition. This paper proposes a framework to detect new patterns of abnormal conditions in gearboxes, that could be associated to new faults. The framework relies on an algorithm to build evolving models in simultaneous scenarios of classification and clustering. The design is inspired by the main principles of the K-means and the One Nearest Neighbour (1-NN) algorithms. A heuristic metric is defined to analyse the new discovered clusters; as a result, these new clusters can be labelled as new classes corresponding to new faulty patterns. Once a new pattern is identified, the associated data feeds a dedicated supervised classifier which is updated through a new training phase. The proposed framework is tested on data collected from a gearbox test bed under realistic conditions of faults. Experimental results show that the algorithm is able to discover new valuable knowledge than can be identified as new faulty classes.
Keywords: Knowledge discovery, machine learning, semi-supervised learning, fault detection, fault diagnosis, gearboxes
DOI: 10.3233/JIFS-169535
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 6, pp. 3581-3593, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]