Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Advances in intelligent computing for diagnostics, prognostics, and system health management
Guest editors: Chuan Li and José Valente de Oliveira
Article type: Research Article
Authors: Luo, Jiufei | Xu, Haitao | Su, Zuqiang; * | Xiao, Hong | Zheng, Kai | Zhang, Yi
Affiliations: School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, P.R. China
Correspondence: [*] Corresponding author. Zuqiang Su, School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China. E-mail: [email protected].
Abstract: To overcome the low diagnosis accuracy caused by the scarcity of labeled training samples, a fault diagnosis method was proposed using orthogonal Semi-supervised linear local tangent space alignment (OSSLLTSA) for feature extraction and transductive support vector machine (TSVM) for fault identification. Through extracting the statistical features were extracted from the sub-bands of vibration signals decomposed by wavelet packet decomposition (WPD), the high-dimensional feature set could be obtained. Following that, the improved kernel space distance evaluation method was applied to remove non-sensitive fault features. Then, a semi-supervised manifold learning method (OSSLLTSA) was proposed to reduce the dimensionality of the fault feature set, and thus to extract fused fault features with high clustering performance. OSSLLTSA overcomes the over-learning of supervised manifold learning and projection aimlessness of unsupervised manifold learning. Finally, the low-dimensional feature set after dimension reduction was inputted into TSVM for fault diagnosis. TSVM was able to completely utilize the fault information contained in unlabelled samples to modify the model, and the trained fault diagnosis model has better generalization ability. The effectiveness of the proposed method was verified based on the case of gearbox fault. Experimental results showed that the proposed method is able to achieve very high fault diagnosis accuracy even when labeled samples were insufficient.
Keywords: Fault diagnosis, semi-supervised manifold learning, gearbox, transductive support vector machine
DOI: 10.3233/JIFS-169529
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 6, pp. 3499-3511, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]