Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Advances in intelligent computing for diagnostics, prognostics, and system health management
Guest editors: Chuan Li and José Valente de Oliveira
Article type: Research Article
Authors: Su, Zuqiang | Xu, Haitao | Luo, Jiufei; * | Zheng, Kai | Zhang, Yi
Affiliations: [1] School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, P.R. China
Correspondence: [*] Corresponding author. Jiufei Luo, School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China. E-mail: [email protected].
Abstract: This study presents a new manifold learning framework for machinery fault diagnosis, in order to further improve fault diagnosis accuracy. The new manifold learning framework contains two stages: unsupervised manifold learning for nonlinear denoising and supervised manifold learning for feature extraction. Firstly, the nonlinear denoising method with unsupervised manifold learning was introduced, which combined advantages of manifold learning in revealing nonlinear manifold structure as well as advantages of phase space reconstruction in representing spatial distribution of signal and noise. Then, fault feature extraction was carried out according to the frequency spectrum of vibration signals after denoising. In order to reduce the high dimension and remove redundant information of frequency spectrum, an improved supervised local tangent space alignment (ISLTSA) was proposed to further enlarge diversity of the fault samples and thus increase separability. Finally, the extracted low-dimensional fault features were inputted into a pattern recognition method for fault identification. The effectiveness of the proposed method was verified by studying the fault diagnosis of bearings.
Keywords: Vibration signal, manifold learning, signal denoising, feature extraction, fault diagnosis
DOI: 10.3233/JIFS-169522
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 6, pp. 3413-3427, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]