Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft computing and intelligent systems: Tools, techniques and applications
Guest editors: Sabu M. Thampi and El-Sayed M. El-Alfy
Article type: Research Article
Authors: Gautam, Anjali* | Bedi, Punam
Affiliations: Department of Computer Science, University of Delhi, Delhi, India
Correspondence: [*] Corresponding author. Anjali Gautam, Department of Computer Science, University of Delhi, Delhi, India. E-mail: [email protected].
Abstract: Proliferation of information is a major confront faced by e-commerce industry. To ease the customers from this information proliferation, Recommender Systems (RS) were introduced. To improve the computational time of a RS for large scale data, the process of recommendation can be implemented on a scalable, fault tolerant and a distributed processing framework. This paper proposes a Content-Based RS implemented on scalable, fault tolerant and distributed framework of Hadoop Map Reduce. To generate recommendations with improved computational time, the proposed technique of Map Reduce Content-Based Recommendation (MRCBR) is implemented using Hadoop Map Reduce which follows the traditional process of content-based recommendation. MRCBR technique comprises of user profiling and document feature extraction which uses the vector space model followed by computing similarity to generate recommendation for the target user. Recommendations generated for the target user is a set of Top N documents. The proposed technique of recommendation is executed on a cluster of Hadoop and is tested for News dataset. News items are collected using RSS feeds and are stored in MongoDB. Computational time of MRCBR is evaluated with a Speedup factor and performance is evaluated with the standard evaluation metric of Precision, Recall and F-Measure.
Keywords: Content-based RS, vector space model, distributed computing, Hadoop Map Reduce
DOI: 10.3233/JIFS-169243
Journal: Journal of Intelligent & Fuzzy Systems, vol. 32, no. 4, pp. 2997-3008, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]