You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Numerical modelling of colloidal transport in fractured porous media with double layered fracture-skin

Abstract

A numerical model is developed for studying the transport of colloids in a coupled fracture-matrix system with double layer fracture-skin. The governing equations describing colloid transport along the fracture and diffusion into fracture-skin layers as well as rock-matrix, normal to the fracture axis are coupled with each other. The coupled non linear equations are solved numerically with fully implicit finite difference method. Sensitivity analysis is performed to investigate the effect of various colloid properties on the colloid concentration in the multiple porosity fractured system. Colloid remobilisation and filtration has been accounted in the model. Results suggest that the inclusion of a second fracture-skin layer has a marginal effect on the transport mechanism of colloids. As colloid velocity increases, the diffusion of colloids into the fracture-skin decreases due to the low residence time available for the colloids. High first layer fracture-skin thickness and porosity enhances the diffusion of colloids from the aqueous phase of the fracture into the skin considerably resulting in low colloidal concentration within the fracture. Variation in the porosity as well as thickness of the second layer of the fracture-skin has negligible effect on the colloidal concentration in the fracture. The colloid transport mechanism in fractured porous media is marginally affected by the multiple porosity system, or in other words additional layers of fracture skin. High filtration coefficient and low remobilisation coefficient result in low colloidal concentration within the fracture.