Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rieck, Konrada; * | Trinius, Philippb | Willems, Carstenb | Holz, Thorstenb; c
Affiliations: [a] Berlin Institute of Technology, Berlin, Germany | [b] University of Mannheim, Mannheim, Germany | [c] Vienna University of Technology, Vienna, Austria
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Malicious software – so called malware – poses a major threat to the security of computer systems. The amount and diversity of its variants render classic security defenses ineffective, such that millions of hosts in the Internet are infected with malware in the form of computer viruses, Internet worms and Trojan horses. While obfuscation and polymorphism employed by malware largely impede detection at file level, the dynamic analysis of malware binaries during run-time provides an instrument for characterizing and defending against the threat of malicious software. In this article, we propose a framework for the automatic analysis of malware behavior using machine learning. The framework allows for automatically identifying novel classes of malware with similar behavior (clustering) and assigning unknown malware to these discovered classes (classification). Based on both, clustering and classification, we propose an incremental approach for behavior-based analysis, capable of processing the behavior of thousands of malware binaries on a daily basis. The incremental analysis significantly reduces the run-time overhead of current analysis methods, while providing accurate discovery and discrimination of novel malware variants.
Keywords: Malicious software, behavior-based analysis, clustering, classification
DOI: 10.3233/JCS-2010-0410
Journal: Journal of Computer Security, vol. 19, no. 4, pp. 639-668, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]