Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the 36th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy – DBSEC 2022
Guest editors: Shamik Sural and Haibing Lu
Article type: Research Article
Authors: Bkakria, Anis; *
Affiliations: IRT SystemX, Palaiseau, France
Correspondence: [*] Corresponding author. E-mail: [email protected].
Note: [1] This paper is an extended and revised version of a paper presented at DBSEC 2022.
Abstract: Attribute based encryption (ABE) is a cryptographic technique allowing fine-grained access control by enabling one-to-many encryption. Existing ABE constructions suffer from at least one of the following limitations. First, single point of failure on security meaning that, once an authority is compromised, an adversary can either easily break the confidentiality of the encrypted data or effortlessly prevent legitimate users from accessing data; second, the lack of user and/or attribute revocation mechanism achieving forward and backward secrecy; third, a heavy computation workload is placed on data user; last but not least, the lack of adaptive security in standard models. In this paper, we propose the first single-point-of-failure free multi-authority ciphertext-policy ABE that simultaneously (1) ensures robustness for both decryption key issuing and access revocation while achieving both backward and forward secrecy; (2) enables outsourced decryption to reduce the decryption overhead for data users that have limited computational resources; and (3) achieves adaptive (full) security in standard models. The provided theoretical complexity comparison as well as the conducted experiments show that our construction introduces linear storage and computation overheads that occurs only once during its setup phase, which we believe to be a reasonable price to pay to achieve all previous features.
Keywords: Attribute-based encryption, threshold cryptography, adaptive security
DOI: 10.3233/JCS-220129
Journal: Journal of Computer Security, vol. 31, no. 6, pp. 727-760, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]