Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Jianfenga | Zhang, Wenshengb | Xu, Jingdonga; *
Affiliations: [a] College of Computer Science, Nankai University, Tianjin, China | [b] Institute of Automation, Chinese Academy of Sciences, Beijing, China
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Traditionally, the mission of intercepting malicious traffic between the Internet and the internal network of entities like organizations and corporations, is largely fulfilled by techniques such as deep packet inspection (DPI). However, steganography, the methodology of hiding secret data in seemingly benign public mediums (e.g., images), has been leveraged by advanced persistent threat (APT) groups in recent years, and is almost impossible to be detected and intercepted by traditional techniques, posing a pervasive and realistic threat to cybersecurity. Additionally, internal networks’ vulnerability to steganography is further exacerbated by the connectivity and large attack surface of the Internet of Things (IoT), whose adoption and deployment are quickly expanding. To protect computer systems against malicious communications that apply steganographic methods potentially unknown to cybersecurity stakeholders, we propose StegEraser, an approach to removing the secret information embedded in public mediums by adversaries, that is fundamentally distinct from existing research which is primarily designed for known steganographic methods. Implemented for images, StegEraser injects an excessively huge amount of random binary data with a novel steganographic method into the images, by utilizing the information-merging capabilities of invertible neural networks (INNs), in order to “overload” adversaries’ steganographic hiding capacity of images transmitted through the firewall performing DPI. In the meantime, StegEraser preserves the perceptual quality of the images. In other words, StegEraser “defeats unknown steganography with steganography”. Extensive evaluation verifies that StegEraser significantly outperforms state-of-the-art (SOTA) methods in terms of removing secret information embedded with both traditional and neural network-based steganographic methods, while visually maintaining the image quality.
Keywords: Cyber security, advanced persistent threat, steganography, invertible neural network, Internet of Things
DOI: 10.3233/JCS-220094
Journal: Journal of Computer Security, vol. 32, no. 2, pp. 117-139, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]