Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Crampton, Jasona; * | Gutin, Gregorya | Karapetyan, Danielb; c | Watrigant, Rémia
Affiliations: [a] Royal Holloway, University of London, UK | [b] University of Essex, UK | [c] University of Nottingham, UK
Correspondence: [*] Corresponding author: Jason Crampton, Information Security Group, Royal Holloway, University of London, Egham, TW20 9QY, UK. E-mail: [email protected].
Note: [1] A preliminary version of this work appeared in [11]. Details about differences between the two versions are given at the end of the Introduction section.
Abstract: A computerized workflow management system may enforce a security policy, specified in terms of authorized actions and constraints, thereby restricting which users can perform particular steps in a workflow. The existence of a security policy may mean that a workflow is unsatisfiable, in the sense that it is impossible to find a valid plan (an assignment of steps to authorized users such that all constraints are satisfied). Work in the literature focuses on the workflow satisfiability problem, a decision problem that outputs a valid plan if the instance is satisfiable (and a negative result otherwise). In this paper, we introduce the Bi-Objective Workflow Satisfiability Problem (BO-WSP), which enables us to solve optimization problems related to workflows and security policies. In particular, we are able to compute a “least bad” plan when some components of the security policy may be violated. In general, BO-WSP is intractable from both the classical and parameterized complexity point of view (where the parameter is the number of steps). We prove that computing a Pareto front for BO-WSP is fixed-parameter tractable (FPT) if we restrict our attention to user-independent constraints. This result has important practical consequences, since most constraints of practical interest in the literature are user-independent. Our proof is constructive and defines an algorithm, the implementation of which we describe and evaluate. We also present a second algorithm to compute a Pareto front which solves multiples instances of a related problem using mixed integer programming (MIP). We compare the performance of both our algorithms on synthetic instances, and show that the FPT algorithm outperforms the MIP-based one by several orders of magnitude on most instances. Finally, we study the important question of workflow resiliency and prove new results establishing that known decision problems are fixed-parameter tractable when restricted to user-independent constraints. We then propose a new way of modeling the availability of users and demonstrate that many questions related to resiliency in the context of this new model may be reduced to instances of BO-WSP.
Keywords: Access control, bi-objective workflow satisfiability problem, fixed-parameter tractability, resiliency
DOI: 10.3233/JCS-16849
Journal: Journal of Computer Security, vol. 25, no. 1, pp. 83-115, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]