Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Affiliations: College of Computer and Artificial Intelligence, Henan Finance University, Zhengzhou, Henan, China
Correspondence: [*] Corresponding author: Yan Cai, College of Computer and Artificial Intelligence, Henan Finance University, Zhengzhou, Henan, China. E-mail: [email protected].
Abstract: Parallel Support Vector Machine (SVM) based on big data has achieved some results in data mining, but due to the complexity of the data itself and a large amount of noisy data, its execution efficiency and classification accuracy in the big data environment are very low. In order to eliminate noise, a noise reduction method based on Noise Cleaning (NC) strategy was proposed, and redundant training samples in big data environments were deleted; Introduce an improved Artificial Fish Swarm Algorithm (IAFSA) to obtain the final Parallel SVM algorithm using mutual information and artificial fish swarm algorithm based on MapReduce (MIAFSA-PSVM) classification model. The results indicate that when compared to CMI-PSVM, the execution time of MIAFSA-PSVM algorithm is higher on the NDC dataset with the largest data size, The SVM parameter optimization algorithm based on MapReduce and cuckoo search (CSSVM-MR) and the particle swarm optimization based parallel support vector machine ensemble algorithm (PSO-PSVM) decreased by 40.1%, 79.3%, and 51.7%, respectively. This indicates that GIESVM-MR and MIAFSA-PSVM have strong adaptability to big data environments and high classification accuracy.
Keywords: Big data, parallel SVM, GIESVM-MR, MIAFSA-PSVM, NC, GDC, IAFSA
DOI: 10.3233/JCM-247335
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 24, no. 2, pp. 1253-1266, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]