Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Krishnan, Narayanan | Cook, Diane J.; | Wemlinger, Zachary
Affiliations: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
Note: [] Corresponding author. E-mail: [email protected].
Abstract: Many intelligent systems that focus on the needs of a human require information about the activities that are being performed by the human. At the core of this capability is activity recognition. Activity recognition techniques have become robust but rarely scale to handle more than a few activities. They also rarely learn from more than one smart home data set because of inherent differences between labeling techniques. In this paper we investigate a data-driven approach to creating an activity taxonomy from sensor data found in disparate smart home datasets. We investigate how the resulting taxonomy can help analyze the relationship between classes of activities. We also analyze how the taxonomy can be used to scale activity recognition to a large number of activity classes and training datasets. We describe our approach and evaluate it on 34 smart home datasets. The results of the evaluation indicate that the hierarchical modeling can reduce training time while maintaining accuracy of the learned model.
Keywords: Activity discovery, activity recognition, hierarchical clustering
DOI: 10.3233/AIS-130230
Journal: Journal of Ambient Intelligence and Smart Environments, vol. 5, no. 6, pp. 621-637, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]