Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Seo, Jungryula | Laine, Teemu H.b; *
Affiliations: [a] Department of Computer Engineering, Ajou University, Suwon, Republic of Korea. E-mail: [email protected] | [b] Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Skellefteå, Sweden. E-mail: [email protected]
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Step counting (SC) algorithms can be applied to different areas such as well-being applications, games, and indoor navigation. Many existing SC algorithms for smartphones use data from inertial sensors to infer the number of steps taken, but their usefulness in real-life situations is limited since typically only a few positions and orientations are supported. Moreover, the algorithms may suffer from dynamic orientation and position changes during walking. To alleviate these shortcomings, we propose the Position and Orientation Independent Step Counting Algorithm (POISCA), which uses an accelerometer and a gyroscope to count the number of steps while allowing the smartphone’s position and orientation to change dynamically. In a nutshell, the algorithm first determines the orientation of the smartphone, and then detects zero crossings with a predetermined buffer range. 48 young adults (36 males, 12 females) participated in an experiment that simulated a real-life scenario to evaluate the performance of POISCA against three other step counting algorithms. The data from 24 participants were randomly assigned to a training group, which was then used to establish threshold parameters for POISCA. The remaining 24 participants’ data were used for accuracy measurement. The results show that POISCA outperforms the other algorithms with a Symmetric Mean Absolute Percentage Error of 4.54%, which can be lower if the algorithm is calibrated for each user. The results suggest that POISCA has potential for use in real-life situations where changes in position and orientation of the smartphone are dynamic.
Keywords: Step counting, zero crossing, smartphone, orientation detection, thresholding, K-NN clustering, Symmetric Mean Absolute Percentage Error
DOI: 10.3233/AIS-180503
Journal: Journal of Ambient Intelligence and Smart Environments, vol. 10, no. 6, pp. 481-495, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]