You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

A constraint-based approach for proactive, context-aware human support


In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active human assistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented as relations in Allen's interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities for contextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. While drawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-based reasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints and reasoned upon continuously.