Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: van Kasteren, T.L.M. | Englebienne, G. | Kröse, B.J.A.
Affiliations: Intelligent Systems Lab Amsterdam, Science Park 107, 1098 XG, Amsterdam, The Netherlands
Note: [] Corresponding author. E-mail: [email protected].
Abstract: Accurately recognizing human activities from sensor data recorded in a smart home setting is a challenging task. Typically, probabilistic models such as the hidden Markov model (HMM) or conditional random fields (CRF) are used to map the observed sensor data onto the hidden activity states. A weakness of these models, however, is that the type of distribution used to model state durations is fixed. Hidden semi-Markov models (HSMM) and semi-Markov conditional random fields (SMCRF) model duration explicitly, allowing state durations to be modelled accurately. In this paper we compare the recognition performance of these models on multiple fully annotated real world datasets consisting of several weeks of data. In our experiments the HSMM consistently outperforms the HMM, showing that accurate duration modelling can result in a significant increase in recognition performance. SMCRFs only slightly outperform CRFs, showing that CRFs are more robust in dealing with violations of the modelling assumptions. The datasets used in our experiments are made available to the community to allow further experimentation.
Keywords: Duration modelling, semi-Markov conditional random fields, hidden semi-Markov model, human activity recognition
DOI: 10.3233/AIS-2010-0070
Journal: Journal of Ambient Intelligence and Smart Environments, vol. 2, no. 3, pp. 311-325, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]