Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Craven, Kristen M. | Kochen, William R. | Hernandez, Carlos M. | Flinn, Jane M.; *
Affiliations: George Mason University, Fairfax, VA, USA
Correspondence: [*] Correspondence to: Dr. Jane M. Flinn, 4400 University Drive, MSN:3F5, Fairfax, VA, 22030, USA. Tel.: +1 703 370 1406; E-mail: [email protected].
Abstract: Hyperphosphorylated tau protein is a key pathology in Alzheimer’s disease (AD), frontotemporal dementia, chronic traumatic encephalopathy, and Parkinson’s disease. The essential trace element zinc exacerbates tauopathy in vitro as well as in a Drosophila model of AD. However, the interaction has never been assessed behaviorally or biochemically in mammals. Zinc supplementation is prevalent in society, finding use as a treatment for macular degeneration and cataracts, and is also taken as an immune system booster with high levels appearing in multivitamins marketed toward the elderly. Using a transgenic mouse model that contains the human gene for tau protein (P301L), we assessed the effects of excess chronic zinc supplementation on tau pathology. Behavioral tests included nest building, circadian rhythm, Morris Water Maze, fear conditioning, and open field. Biochemically, total tau and Ser396 phosphorylation were assessed using western blot. Number of tangles were assessed by Thioflavin-S and free zinc levels were assessed by Zinpyr-1. Tau mice demonstrated behavioral deficits compared to control mice. Zinc supplementation exacerbated tauopathic deficits in circadian rhythm, nesting behavior, and Morris Water Maze. Biochemically, zinc-supplemented tau mice showed increased phosphorylation at pSer396. Zinc supplementation in tau mice also increased tangle numbers in the hippocampus while decreasing free-zinc levels, demonstrating that tangles were sequestering zinc. These results show that zinc intensified the deficits in behavior and biochemistry caused by tau.
Keywords: Circadian rhythm, spatial memory, tau proteins, tauopathies, western blotting, zinc
DOI: 10.3233/JAD-180151
Journal: Journal of Alzheimer's Disease, vol. 64, no. 2, pp. 617-630, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]