Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Harris, Rachel | Miners, James Scott | Allen, Shelley | Love, Seth; *
Affiliations: Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
Correspondence: [*] Correspondence to: Seth Love, Institute of Clinical Neurosciences, University of Bristol School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol BS10 5NB, UK. E-mail: [email protected].
Abstract: Vascular endothelial growth factor (VEGF) is a potent angiogenic factor. Despite upregulation of VEGF in the brain in Alzheimer’s disease (AD), probably in response to amyloid-β, vasoconstriction, and tissue hypoxia, there is no consequent increase in microvessel density. VEGF binds to and activates VEGF receptor 2 (VEGFR2), but also binds to VEGF receptor 1 (VEGFR1), which exists in less-active membrane-bound and inactive soluble (sVEGFR1) forms and inhibits pro-angiogenic signaling. We have investigated whether altered expression of VEGF receptors might account for the lack of angiogenic response to VEGF in AD. We assessed the cellular distribution and protein level of VEGFR1 and VEGFR2 in parietal cortex from 50 AD and 36 age-matched control brains, and related the findings to measurements of VEGF and von Willebrand factor level (a marker of microvessel density) in the same tissue samples. VEGFR2 was expressed by neurons, astrocytes and endothelial cells. VEGFR1 was expressed predominantly neuronally and was significantly reduced in AD (p = 0.02). Western blot analysis on a subset of brains showed reduction in VEGFR1:sVEGFR1 in AD (p = 0.046). The lack of angiogenesis despite cerebral hypoperfusion in AD is not explained by altered expression of VEGFR2 or total VEGFR1; indeed, the downregulation of VEGFR1 may represent a pro-angiogenic response to the hypoperfusion. However, the relative increase in sVEGFR1 would be expected to have an anti-angiogenic effect which may be a factor in AD.
Keywords: Alzheimer’s disease, brain ischemia, microvessels, vascular endothelial growth factor A, vascular endothelial growth factor receptor-1, vascular endothelial growth factor receptor-2
DOI: 10.3233/JAD-170745
Journal: Journal of Alzheimer's Disease, vol. 61, no. 2, pp. 741-752, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]