Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ruiz, Elenaa; * | Ramírez, Javierb | Górriz, Juan Manuelb | Casillas, Jorgea | the Alzheimer’s Disease Neuroimaging Initiative1
Correspondence: [*] Correspondence to: Elena Ruiz, Department of Computer Science and Artificial Intelligence, University of Granada, E-18071, Granada, Spain. Tel.: +34 958241773; E-mail: [email protected].
Note: [1] Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wpcontent/ uploads/how to apply/ADNI Acknowledgement List.pdf
Abstract: This paper proposes a novel fully automatic computer-aided diagnosis (CAD) system for the early detection of Alzheimer’s disease (AD) based on supervised machine learning methods. The novelty of the approach, which is based on histogram analysis, is twofold: 1) a feature extraction process that aims to detect differences in brain regions of interest (ROIs) relevant for the recognition of subjects with AD and 2) an original greedy algorithm that predicts the severity of the effects of AD on these regions. This algorithm takes account of the progressive nature of AD that affects the brain structure with different levels of severity, i.e., the loss of gray matter in AD is found first in memory-related areas of the brain such as the hippocampus. Moreover, the proposed feature extraction process generates a reduced set of attributes which allows the use of general-purpose classification machine learning algorithms. In particular, the proposed feature extraction approach assesses the ROI image separability between classes in order to identify the ones with greater discriminant power. These regions will have the highest influence in the classification decision at the final stage. Several experiments were carried out on segmented magnetic resonance images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) in order to show the benefits of the overall method. The proposed CAD system achieved competitive classification results in a highly efficient and straightforward way.
Keywords: Alzheimer’s disease, Alzheimer’s Disease Neuroimaging Initiative, classification, computer aided diagnosis, computer-assisted, histogram-based analysis, image processing, MRI, supervised learning
DOI: 10.3233/JAD-170514
Journal: Journal of Alzheimer's Disease, vol. 65, no. 3, pp. 819-842, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]