Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Law, Bernard M.a | Guest, Amy L.a | Pullen, Matthew W. J.a | Perkinton, Michael S.b | Williams, Robert J.a; *
Affiliations: [a] Department of Biology and Biochemistry, University of Bath, Bath, UK | [b] IMED Neuroscience, AstraZeneca, Granta Park, Cambridge, UK
Correspondence: [*] Correspondence to: Robert J. Williams, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. Tel.: +44 0 1225 386553; E-mail: [email protected].
Abstract: Sequential cleavage of the amyloid-β protein precursor (AβPP) by BACE1 (β-secretase) followed by theγ-secretase complex, is strongly implicated in Alzheimer’s disease (AD) but the initial cellular responses to these cleavage events are not fully defined. β-secretase-mediated AβPP processing yields an extracellular domain (sAβPPβ) and a C-terminal fragment of AβPP of 99 amino acids (C99). Subsequent cleavage by γ-secretase produces amyloid-β (Aβ) and an AβPP intracellular domain (AICD). A cellular screen based on the generation of AICD from an AβPP-Gal4 fusion protein was adapted by introducing familial AD (FAD) mutations into the AβPP sequence and linking the assay to Gal4-UAS driven luciferase and GFP expression, to identify responses immediately downstream of AβPP processing in neurons with a focus on the transcription factor Foxo3a which has been implicated in neurodegeneration. The K670N/M671L, E682K, E693G, and V717I FAD mutations and the A673T protective mutation, were introduced into the AβPP sequence by site directed mutagenesis. When expressed in mouse cortical neurons, AβPP-Gal4-UAS driven luciferase and GFP expression was substantially reduced by γ-secretase inhibitors, lowered by β-secretase inhibitors, and enhanced by α-secretase inhibitors suggesting that AICD is a product of the βγ-secretase pathway. AβPP-Gal4-UAS driven GFP expression was exploited to identify individual neurons undergoing amyloidogenic AβPP processing, revealing increased nuclear localization of Foxo3a and enhanced Foxo3a-mediated transcription downstream of AICD production. Foxo3a translocation was not driven by AICD directly but correlated with reduced Akt phosphorylation. Collectively this suggests that βγ-secretase-mediated AβPP processing couples to Foxo3a which could be an early neuronal signaling response in AD.
Keywords: AICD, Akt, Alzheimer’s disease, amyloid-β protein precursor, apoptosis, β-secretase, Forkhead transcription factor, FOXO3 protein, γ-secretase, neurodegeneration
DOI: 10.3233/JAD-170393
Journal: Journal of Alzheimer's Disease, vol. 61, no. 2, pp. 673-688, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]