Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Esquerda-Canals, Giselaa; b | Martí-Clúa, Joaquimb | Roda, Alejandro R.a | Villegas, Sandraa; *
Affiliations: [a] Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain | [b] Departament de Biologia Cellular, Protein Folding and Stability Group, de Fisiologia i d’Immunologia, Unitat de Citologia i d’Histologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Correspondence: [*] Correspondence to: Sandra Villegas, Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. Tel.: +34 935814258; Fax: +34 935811264; E-mail: [email protected].
Abstract: The main histopathological hallmarks of Alzheimer’s disease (AD) are the extracellular deposition of neuritic amyloid plaques, composed of amyloid-β (Aβ) peptide, and the intracellular accumulation of neurofibrillary tangles, composed of hyperphosphorylated tau. Both traits are emulated in the 3xTg-AD mouse model. Because the relevance of this model in the bibliography and the main role of Aβ in neuronal impairment, here we have detailed the brain Aβ/AβPP distribution to subsequently quantify cellular density and intracellular burden for specific neuronal populations in the early stages of the disease. 6E10 immunoreactivity was evident in the deep layers of the cerebral cortex, in the pyramidal cell layer of the hippocampus, in the basolateral amygdala nucleus, and in the deep cerebellar nuclei macroneurons; whereas the specific neuronal populations with decreased cellular density were the large pyramidal neurons from the layers V-VI in the cerebral cortex, the pyramidal neurons from the CA2-3 region in the hippocampus, and the large neurons from the basolateral nucleus in the amygdala, apart from the already reported deep cerebellar nuclei. Interestingly, we found a strong correlation between intracellular Aβ/AβPP burden and cellular density in all these populations. In addition, behavioral testing showed the functional consequences of such a neuronal depletion. Concretely, anxious-like behavior is manifested in the corner and open-field tests, as well as cognitive functions shown to be impaired in the novel object recognition test and Morris water maze paradigm. To our knowledge, this is the first deep characterization of the specific neuronal populations affected in the 3xTg-AD mouse model.
Keywords: 3xTg-AD, Alzheimer’s disease, amyloid-β, AβPP, behavioral alterations, 6E10 immunoreactivity, neuronal loss
DOI: 10.3233/JAD-170218
Journal: Journal of Alzheimer's Disease, vol. 59, no. 3, pp. 1079-1096, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]