Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: dos Santos, João Paulo Almeida | Vizuete, Adriana | Hansen, Fernanda | Biasibetti, Regina | Gonçalves, Carlos-Alberto; *
Affiliations: Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence: [*] Correspondence to: Carlos-Alberto Gonçalves, Av Ramiro Barcelos, 2600-anexo, Lab Calcium Binding Proteins in CNS, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, 90035-003, Porto Alegre, Brazil. E-mail: [email protected].
Abstract: O-GlcNAc transferase (OGT), an enzyme highly expressed in brain tissue, catalyzes the addition of N-acetyl-glucosamine (GlcNAc) to hydroxyl residues of serine and threonine of proteins. Brain protein O-GlcNAcylation is diminished in Alzheimer’s disease (AD), and OGT targets include proteins of the insulin-signaling pathway (e.g., insulin receptor susbtrate-1, IRS-1). We hypothesized that ICV streptozotocin (STZ) also affects O-GlcNAc protein modification. We investigated hippocampal metabolic changes in Wistar rats, particularly OGT levels and insulin resistance, as well as related astroglial activities, immediately after ICV STZ administration (first week) and later on (fourth week). We found an early (at one week) and persistent (at fourth week) decrease in OGT in the ICV STZ model of AD, characterized by a spatial cognitive deficit. Consistent with this observation, we observed a decrease in protein O-GlnNAc modification at both times. Increased phosphorylation at serine-307 of IRS-1, which is related to insulin resistance, was observed on the fourth week. The decrease in OGT and consequent protein O-GlnNAc modifications appear to precede the decrease in glucose uptake and increment of the glyoxalase system observed in the hippocampus. Changes in glial fibrillary acidic protein and S100B in the hippocampus, as well as the alterations in cerebrospinal fluid S100B, confirm the astrogliosis. Moreover, decreases in glutamine synthetase and glutathione content suggest astroglial dysfunction, which are likely implicated in the neurodegenerative cascade triggered in this model. Together, these data contribute to the understanding of neurochemical changes in the ICV STZ model of sporadic AD, and may explain the decreases in protein O-GlcNAc levels and insulin resistance observed in AD.
Keywords: Astrocyte, GFAP, hippocampus, insulin-resistance, O-GlcNAc transferase, streptozotocin, S100B
DOI: 10.3233/JAD-170211
Journal: Journal of Alzheimer's Disease, vol. 61, no. 1, pp. 237-249, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]