Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bihaqi, Syed Waseema | Huang, Huib | Wu, Jinfanga | Zawia, Nasser H.a; *
Affiliations: [a] Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA | [b] School of Public Health, Zhengzhou University, Henan, China
Correspondence: [*] Correspondence to: Nasser H. Zawia, Ph.D, University of Rhode Island, 227 Fogarty Hall, 41 Lower College Road, Kingston, RI 02881, USA. Tel.: (401) 874 5909; (401) 874 5368; Fax: (401) 874 2516; E-mail: [email protected].
Abstract: The beginnings of late onset Alzheimer's disease (LOAD) are still unknown; however, the progressive and latent nature of neurodegeneration suggests that the triggering event occurs earlier in life. Aging primates exposed to lead (Pb) as infants exhibited an overexpression of the amyloid-β protein precursor (AβPP), amyloid-β (Aβ) and enhanced pathologic neurodegeneration. In this study, we measured the latent expression of a wide array of brain-specific genes and explored whether epigenetic pathways mediated such latent molecular and pathological changes. We analyzed the levels of proteins associated with DNA methylation, i.e., DNA methyltransferase 1 (Dnmt1), DNA methyltransferase3a (Dnmt3a), methyl-CpG binding protein-2 (MeCP2) and those involved in histone modifications (acetylated and methylated histones). We monitored the expression profiles of these intermediates across the lifespan and analyzed their levels in 23-year-old primate brains exposed to Pb as infants. Developmental Pb exposure altered the gene expression of the arrayed genes, which were predominately repressed, with fewer upregulated genes. The latent induction and repression of genes was accompanied by a significant decrease in the protein levels of Dnmts, MeCP2, and proteins involved in histone modifications. The attenuation of DNA methylation enzymes is consistent with hypomethylating effects, which promote upregulation of the genes, while the alterations in the histone modifiers are associated with the repression of genes. Hence, we deduce that early life exposure to Pb can reprogram gene expression resulting in both upregulation and down-regulation of genes through alternate epigenetic pathways contributing to an enhancement in neurodegeneration in old age.
Keywords: aging, Alzheimer's disease, DNA methylation, gene expression, histone modifications, Pb
DOI: 10.3233/JAD-2011-111013
Journal: Journal of Alzheimer's Disease, vol. 27, no. 4, pp. 819-833, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]