Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Matsuda, Shujia | Tamayev, Roberta | D'Adamio, Lucianoa; b; *
Affiliations: [a] Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA | [b] National Research Council of Italy – Cellular Biology and Neurobiology Institute Via del Fosso del Fiorano, Roma, Italy
Correspondence: [*] Correspondence to: Luciano D'Adamio, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Tel.: +1 718 430 3244; Fax: +1 718 430 8711; E-mail: [email protected].
Abstract: An autosomal dominant mutation in the BRI2/ITM2B gene causes Familial Danish Dementia (FDD). We have generated a mouse model of FDD, called FDDKI, genetically congruous to the human disease. These mice carry one mutant and one wild type Bri2/Itm2b allele, like FDD patients. Analysis of FDDKI mice and samples from human patients has shown that the Danish mutation causes loss of Bri2 protein. FDDKI mice show synaptic plasticity and memory impairments. BRI2 is a physiological interactor of amyloid-β protein precursor (AβPP), a gene associated with Alzheimer's disease, which inhibits processing of AβPP. AβPP/Bri2 complexes are reduced in synaptic membranes of FDDKI mice. Consequently, AβPP metabolites derived from processing of AβPP by β-, α-, and γ-secretases are increased in Danish dementia mice. AβPP haplodeficiency prevents memory and synaptic dysfunctions, consistent with a role for AβPP-metabolites in the pathogenesis of memory and synaptic deficits. This genetic suppression provides compelling evidence that AβPP and BRI2 functionally interact. Here, we have investigated whether AβPP processing is altered in FDD patients' brain samples. We find that the levels of several AβPP metabolites, including Aβ, are significantly increased in the brain sample derived from an FDD patient. Our data are consistent with the findings in FDDKI mice, and support the hypothesis that the neurological effects of the Danish form of BRI2 are caused by toxic AβPP metabolites, suggesting that Familial Danish and Alzheimer's dementias share common pathogenic mechanisms.
Keywords: Alzheimer's disease, amyloid-β protein precursor, BRI2, familial danish dementia
DOI: 10.3233/JAD-2011-110785
Journal: Journal of Alzheimer's Disease, vol. 27, no. 2, pp. 385-391, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]