Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Drug Discovery for Neurodegenerative Diseases: Challenges and Novel Biochemical Targets
Guest editors: Gabriel B. Britton, Mark A. Smith, George Perry, Kumar Sambamurti and K.S. Jagannatha Rao
Article type: Research Article
Authors: Yanagisawa, Daijiroa | Taguchi, Hiroyasua | Yamamoto, Akitsugub | Shirai, Nobuakic | Hirao, Koichic | Tooyama, Ikuoa; *
Affiliations: [a] Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Japan | [b] Faculty of Bioscience, Department of Animal Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama, Japan | [c] Industrial Research Center of Shiga Prefecture, Ritto, Japan
Correspondence: [*] Correspondence to: Ikuo Tooyama, MD, PhD, Director, Professor, Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu 520-2192, Japan. Tel.: +81 77 548 2330; Fax: +81 77 548 2402; E-mail: [email protected].
Abstract: Studies of Alzheimer's disease (AD) strongly support the hypothesis that amyloid-β (Aβ) deposition in the brain is the initiating event in the progression of AD. Aβ peptides easily form long insoluble amyloid fibrils, which accumulate in deposits known as senile plaques. On the other hand, recent work indicated that soluble Aβ oligomers, rather than monomers or insoluble Aβ fibrils, might be responsible for neuronal and synaptic dysfunction in AD. Curcumin, a low molecular weight yellow-orange pigment derived from the turmeric plant, has shown therapeutic effects in transgenic mouse models of AD. However, it remains unclear whether curcumin interacts directly with the Aβ oligomers. This study investigated any interaction between curcumin and Aβ oligomers such as globulomer and Aβ-derived diffusible ligand (ADDL). Globulomer was observed as a cluster of spherical structures by electron microscopic analysis, and ADDL was also detected as small spherical structures. Fluorescence analysis revealed a significant increase in the fluorescence of curcumin when reacted with both oligomers. Furthermore quartz crystal microbalance analysis showed significant frequency decreases in oligomer-immobilized electrodes following the addition of curcumin. These results strongly suggested that curcumin binds to Aβ oligomers and to Aβ fibrils. The association of curcumin with Aβ oligomers may contribute to the therapeutic effect on AD. Based on these findings, curcumin could provide the basis of a novel concept in AD therapies targeting Aβ oligomers.
Keywords: Alzheimer's disease, amyloid-β, curcumin, oligomers
DOI: 10.3233/JAD-2011-102100
Journal: Journal of Alzheimer's Disease, vol. 24, no. s2, pp. 33-42, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]