You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Passive (Amyloid-β) Immunotherapy Attenuates Monoaminergic Axonal Degeneration in the AβPPswe/PS1dE9 Mice


The role of amyloid-β (Aβ) in the neurodegeneration of Alzheimer's disease remains controversial, to a large extent because of the lack of robust neurodegeneration in mouse models of AD. To address this question, we examined the effects of Aβ antibodies in the recently described monoaminergic (MAergic) axonal degeneration in AβPPswe/PS1dE9 mice. To determine if Aβ accumulation is directly involved in degeneration of MAergic axons, we examined the effects of passive anti-Aβ antibody (7B6) administration on Aβ pathology and MAergic degeneration in AβPPswe/PS1dE9 mice. Injections of monoclonal antibody (mAb) 7B6 into mice (6 to 9 months of age) resulted in a modest reduction of Aβ load in the brains of AβPPswe/PS1dE9 mice. In addition, 7B6 treated AβPPswe/PS1dE9 mice had significantly higher densities of MAergic axons in both cortex and in hippocampus as compared to untreated mutant mice. For example, 7B6 treated mice showed almost 2-fold greater densities of serotonergic (5-HT) axons in the cortex compared to saline treated mice. Similar findings were observed in the catecholaminergic (TH) axons. Our results demonstrate that lowering of Aβ levels via passive Aβ immunotherapy ameliorates ongoing degenerative processes, supporting a causal link between Aβ and neurodegeneration.